
www.manaraa.com

On Distributed Systems and CSCL1

Leandro Navarro, Joan Manel Marquès, Felix Freitag
Computer Architecture Department

Politechnic University of Catalonia (UPC)
{leandro,marques,felix}@ac.upc.es

1 This work has been supported by the Spanish Ministry of Science and Technology under TIC2002-04258-C03-01.

Abstract

The design of distributed systems for collaborative
work or learning requires that both humans and
machines be organized such that the potential and
limitations of the human-machine interdependence is
optimized. Current distributed architectures like Peer-to-
Peer and Grids have not yet been optimized to support
the needs of collaborative applications. In this paper, we
investigate the requirements of collaborative applications
for groups and discuss current Grid and P2P
architectures with regards to this need. We suggest
possible extensions described in a "function dispersion
architecture". Finally, we present as case study our
recent work on the design of a middleware to provide
services for distributed collaborative applications that
has been validated by simulation and prototyping.

1. Introduction

The world of humans and machines which collaborate
summing their capabilities, resources and work is
complex and with a sensitive equilibrium state. The
design of a system, in which people collaborate by means
of software applications requires that all agents (both the
persons and applications) are organized in order to benefit
from the potential of technology and human
collaboration, but also to respect its limitations.

Collaborative applications can provide to a group of
persons a highly productive environment, achieving its
goals efficiently. In the contrary, an application can also
represent a highly ineffective tool, imagine situations of
intensive collaboration which lead to the saturation of the
machines and the network.

It is therefore important to design collaborative
applications taking account how people collaborate, and
taking account how the machines and the network work,
on which these application run. Both the components
(humans and machines) of this social-technical
framework have limitations, which need to be considered
in the design, in order find a balance in the capacities and
to avoid disequilibrium.

The efficiency of collaborative applications will
benefit if underlying concepts of both group interactions
within humans and performance of distributed
architectures are considered. Aspects from human
interactions include for instance, how groups coordinate
and where the participants are located. Aspects from
distributed system architecture include the characteristics
of the user interface, the machines used, network
characteristics, and the price and availability of
computational resources.

In the domain of cooperation for the development the
term “appropriate technology” is coined, which basically
suggests to design and build systems, which adapt to the
available resources. This strategy fits to the current
resources and avoids additional costs, taking into account
the capacity of humans and machines. In our view, we
share this goal in the sense of optimizing on the available
resources the benefits of collaborative applications.

From a technical point of view, the trend of software
design to high abstraction may hide important details of
the infrastructure to the designer, which may lead to
inappropriate systems for certain situations. This may
concern general concepts of distribution, the presence of
faults, and the scale of the system.

In our view, we believe that systems proposed for
collaborative work have to take into account the
characteristics of the interactions of such a complex
distributed system formed by humans, computers and

www.manaraa.com

networks, which are organized to perform a collaborative
task.

The remainder of the paper is structured as follows: In
section 2 we identify the requirements a system designed
for collaborative work should provide. Section 3 provides
a discussion of current distributed architectures with
regards to using them for collaborative tasks. In section 4
we propose a "function dispersion" architecture which
contains some of the elements identified for collaborative
applications. Section 5 presents as case study the
middleware LaCOLLA targeting to provide services for
collaborative applications. In section 6 we conclude the
paper.

2. Requirements for systems to support
collaborative tasks

The collaboration and learning of humans by means of
computers can lead to difficulties in several situations,
starting with the interconnection when the participants of
a collaborative tool belong to different organizations or
departments, located in separate locations with less than
ideal computers and networks. In such situations, the
resources are managed by distinct authorities, which often
target to facilitate the internal work, but hinder
collaborative tasks over different domains, like for
instance through firewalls. These "extreme" and complex
situations offer an excellent opportunity for computer-
based instructional systems, but the architecture of current
systems fails.

There are several additional difficulties, which
designers face when using current environments for
collaborative tasks. In the following we indicate these
difficulties as requirements to be solved by a system for
building collaborative applications in settings where
educational applications with traditional centralized or
server-based architectures fail.

• Internet Scale of the system: The collaborative
system can be formed by various distributed
components and as such both its members and
components can be in any place (function
dispersion).

• Universal and transparent access: The
participants can join the system at any place
while the user interface should be independent of
the location.

• Decentralization: None of the components
should neither be exclusively in charge of
coordination, neither have unique information.
Centralized approaches often lead to simple, but
more critical solutions, affecting the autonomy
of the participants, the potential growth of the
system and its fault tolerance.

• Self-organization of the system: It is desirable
that the system is able to work without external
intervention, to organize its components
spontaneously, have fault tolerance and adapt to
dynamics (i.e. mobility, disconnection).

• Individual autonomy: Each member of a group
should have the facility to decide which
resources are contributed (shared), when to
connect and disconnect.

• Self-sufficiency: Each group should be able to
work with limited resources, like for instance
those contributed by the members of the group,
or the group should be able to obtain additional
resources externally.

• Sharing: Different participants or components
should be able to use the same group information
(i.e. events, objects, structures), both for access
and for representation.

• Security: The system should guarantee the
identity of the participants and provide access
control to confidential shared information (data
protection, authentication).

• Resource availability: The system should
provide the resources such that a group is able to
carry out a collaborative task. The resources
include both the resources contributed by the
group members (Peer-to-Peer) and external
resources (Grid).

3. Current distributed architectures

In order to assure that the requirements for collaborative
applications are met, the architecture of the system is
critical. It is important to define the components of which
the architecture consists and which distributed
mechanisms or algorithms are used for the management
and organization of the system.

3.1 Peer-to-Peer

Peer-to-Peer (P2P) networks are formed by the PCs of

the participants. All machines share their resources:
computation, storage and communication (although the
network is an external paid service). They act both as
servers and as clients. P2P networks are self-sufficient
and self-organizing, applying protocols in a decentralized
way to perform search and location, and to share the
burden of object transfer. Due to the fact that
coordination is not made by a central authority, all
participants have similar functionalities. P2P networks are
characterized by high fault tolerance, tolerance to
disconnections and to attacks.

www.manaraa.com

Some Peer-to-Peer networks, however, have problems
when increasing its size, since search protocols can lead
to a heavy load on the network and in the machines.
Often, neither guarantee on the duration and success of
the search is given, nor on the access to the information
[7].

Overlay networks are a type of Peer-to-Peer network,
which offer a higher level network service. Using
distributed hash tables (DHTs) or network measurements,
its topology is built taking into account the content of the
peers. DHTs or network measurements can achieve better
load balancing, the routing for search mechanisms reduce
the time to find an object, and reduce the transfer time of
the object. Search becomes deterministic, which
significantly improves the performance of such P2P
networks [5].

3.2. Grid architectures

The computational Grid is an infrastructure for
distributed computing targeting at applications, which
require a large amount of computational power or data
processing capacity. The name is a metaphor of the
electrical network (power grid), which is a complex
distributed infrastructure but of easy use for the user and
which provides power on demand.

The Grid offers access to resources for data processing
and other functions not available in a single machine.
This is achieved by a Grid middleware, which integrates
computational resources of different geographic locations
and organizations: this leads to the concept of virtual
organization, an alliance of people working together and
sharing resources from different organizations. The grid
middleware aims at providing organizational
transparency, hiding the complexity of unifying resources
and crossing organizational boundaries.

The existence of problems which require a huge
amount of processing power (for example experiments in
physics in CERN), the availability of a concrete
architecture (currently based on Web Services) and an
open toolkit as de-facto standard (Globus) has made the
Grid a success in the high performance computing and
related communities.

The current architecture of Globus based on Web
Services, Open Grid Services Architecture (OGSA),
offers functions for the integration and management of
services, including the creation, management of the life
cycle and grouping of services, security, policies, access,
integration of data, and the management of the workflow.

AccessGrid [10] is an application to create
environments for collaboration of research groups. It
offers a multi-user work-space and connections of audio
and video with other spaces. This is achieved using large
screens for projection (1.2 x 5 meters) and bidirectional
sound. Interestingly, AccessGrid uses concepts from P2P:

It is based on an overlay network, in which audio and
video channels circulate by diffusion (IP multicast).
Currently, AccessGrid 2.0 uses Globus for managing
security in transport (SSL) and authentication (PKI) of
the multimedia and multipoint sessions.

3.3. Information architecture

Standardization in the structure of information allows
that in addition to persons, programs will be able to learn
sufficiently about the significance of data in order to
process and organize it. This is known as the semantic
Web [2]. In the future the web and other applications like
collaborative applications need to have information about
objects, like having a global database.

The architectural components include semantic
(meaning of the elements), structure (organization of the
elements), and syntax (communication). The
standardization of these components in general terms and
within the area of learning and collaboration should make
group activities in collaborative applications easier.

3.4. Programmable networks

A fundamental difference of the web compared with
radio or TV is that the power of the emission determines
the area which is covered. Differently, in the web, the
resources to serve a document are proportional to the
audience, which usually is not predictable [1].

A programmable infrastructure is formed by a large
number of machines distributed on Internet, on which by
means of a single interface new programs are installed.
This allows in an easy way the deployment of new
services in the network. The model of programmable
networks is close to that of the Grid.

Programmable networks allow automating the
installation, deployment, and maintenance of applications
and services in different machines in the network. They
can adapt to the demand and dispersion of the users.

4. Function Dispersion architecture for
collaborative work

We propose a system model and architecture, which
incorporates the majority of the previously described
ideas. The system should integrate persons, who
collaborate in a task by means of distributed computers
interconnected with a network. Our approach considers
light user agents (thin clients), which access to entities
and use computational resources without imposing any
significant constrain on the capability of computational
resources (i.e. mobile appliances, simple devices, PDA,

www.manaraa.com

etc). This approach is similar to the concept of Ubiquitous
Computing [11].

In fact, our approach applies to many existing
applications, which use a browser as the user agent and a
server structured in one or two units, often based on the
Model-View-Controller paradigm [3]. By means of web
pages or small programs (applets) the browser provides
the view and the controller. The server provides the
model in terms of a program. This program processes the
requests according to the model, which is stored
persistently in the data base. The systems called two-tier
and three-tier can also be classified to be in this category.

Other applications, which are executed in any
machine in a network and view in a terminal using
protocols for graphic representation like X, IC, and RDP,
also follow this scheme.

We have studied VNC [9], a tool for graphic
representation in light clients, which uses the Remote
Frame Buffer protocol (RFB). This protocol allows
visualizing remotely the user interface of any application
on the Internet and from different types of machines.
Characteristics of this protocol are its simplicity,
requiring only moderate network and machine resources,
and being independent of the characteristics of the
machine where the visualization is carried out: it imposes
minimal requirements on client devices, and it has been
implemented successfully on very simple devices.

An extension of this protocol has been developed for a
collaborative application [8], in which a group of students
visualizes a networked computer lab. Functionalities to
facilitate the collaboration between groups of students
and teacher have been implemented.

4.1. Collaborative interaction levels

In order to classify the requirement for collaborative
functionalities we define a number of collaborative levels
in the user interface (all have been implemented in a
prototype [8]):

a) Screen: The content of the screen is shared with
several persons. In this scenario, members of a
group visualize in each screen the same content
of a selected screen. In this screen collaboration
is provided like for example by using different
cursors or sharing a unique cursor, which is
assigned to the different users according to some
turn taking or floor control mechanism. In such a
scenario, for instance, each student could write a
text when its turn is activated, which can be read
by the other students.

b) Window: The interface of an application is
shared with several persons. As example of this
scenario we can consider web browsing in
groups (a web "guided tour") with browser
windows with a multi-user interface (obeys to

user interface events from several users). Each
group member has a browser window which
obeys to user interface events from the local user
and those (load of a new URL) sent by the group
leader. One of the members of the group could
control which pages are visualized in all browser
windows. Each member has also local control of
his browser window and can read and interact
with the page autonomously.

c) Application: This scenario considers multi-user
applications, which interacts with each user
according to the user requirements. Each user
can have a different view of the information
shared by the participants. For example, we can
consider a shared text editor, in which all the
participants work on the same document, but
each user can visualize and modify a different
part of the document.

This model with light user agents, which we suggest,

allows that participants from a wide range of devices, like
PCs connected to Ethernet or PDAs with wireless access
can collaborate. Having light clients the requirement of
mobility appears feasible: The user interface of the
participants may be the same and migrate from one device
to another, or continue to be active even if the participant
changes the location and machine.

Light clients appear as a reasonable choice as it can be
assumed that in a collaborative scenario the participants
of a group change frequently their location. This requires
finding solutions to handle such technical and
organizational changes, which finally fulfils the
requirement of universal and transparent access.

4.2. Computational resources

Traditionally, the computational resources are

provided previously by "our own" organization in the
view of the requirements of the application and the
persons using them.

Depending on the application, a server provided by the
organization may carry out the collaborative application.
This may lead to a problem in the case that the server is
administered by a policy which does not adapt well to the
application, or if the collaborative application is used by
participants which belong to different organizations.

Following the requirements of decentralization, self-
organization and self-sufficiency described previously,
we propose to apply mechanisms and functionalities
applied in P2P networks, in order to avoid centralized
components.

 There are also cases that groups which collaborate do
not have the necessary computational resources. In order
to fulfill the criterion of self-sufficiency, systems which
execute collaborative applications, should provide

www.manaraa.com

mechanism which allow using external resources as a
service in a multi-organizational environment (this is the
aim of the Grid, and overlay networks (P2P) and
programmable networks).

5. Case Study: Middleware LaCOLLA

We have designed, simulated and implemented

LaCOLLA, a decentralized and distributed infrastructure
(or middleware) offering a set of common services for
handling objects, events and groups management to
collaborative applications [6]. This infrastructure aims to
facilitate the creation of collaborative applications that
allow disperse groups to collaborate through the Internet.

The features of this infrastructure are:
- Groups: The group is the basic unit of an

organization. All actions occur inside a group
boundary. A group is considered as a set of
people or applications doing a collaborative
activity. Collaborative applications will have the
group management service by the middleware.

- Group storage: Transparency of availability,
replication, location, and selection of the best
location. LaCOLLA hides to the applications
and users the complexity of managing objects in
a decentralized, distributed and replicated
environment. It guarantees the availability of
objects by replicating them and placing the
replicas at best locations depending on the users
demand.

- Group awareness: Awareness information &
events dissemination. To facilitate the
coordination, the members of a group need to
know how the group is evolving (awareness). In
LaCOLLA this awareness is achieved by
disseminating all the actions done inside the
group as events. For the collaborative
applications, this dissemination is done in a
transparent manner. Apart from informing group
members about the evolution of the group,
events dissemination helps storage units to
decide the best location of objects and to have a
virtually strong consistency in the replicated
object storage.

- Dynamism: Due to dynamic nature of groups
(i.e. members are not working full time in the
group), LaCOLLA must deal with the
connection and disconnection of group
members.

- Interoperability and sharing: To deal with the
diversity of group members the management of
groups, objects and events is independent of the
applications. This facilitates the access to data
from different applications (interoperability) and

that different applications share resources related
to a group (i.e. two applications use the same
presence information provide by LaCOLLA).

- Self-Organization: The term “self-organization”
is not defined precisely in the literature.
Intuitively, it describes the ability of a system to
organize its components into a working
framework without the need of external help or
control. For our purposes we shall understand
self-organization as the capability of adding and
removing system parts without the need for
reconfiguration or the need for human
intervention.

- Decentralized management: Each member of
the group handles the resources provided to the
group at their wish. This approach without
central authority or coordination influences the
system design.

LaCOLLA is based on a peer-to-peer architecture.

Each node implements one, two or three of the following
functionalities: User agent (UA), repository agent (RA) or
group administration and presence agent (GAPA).

The user agent represents users in the system. It is in
charge of being notified of all actions done by the user.
Once notified, the user agent interacts with other nodes to
get the action processed or to get the event distributed to
other members. It is also in charge of receiving events
about actions done by other members.

Repository agents are dedicated to the storage of the
information (events and objects) generated by the group.
To facilitate the availability and the accessibility on a
potentially large scale, information can be replicated in
different storage components.

Group administration and presence agents contain the
information about users and groups. They are also
specialized on presence information.

The current implementation of LaCOLLA provides
the basic mechanisms. They are grouped in the following
categories: Events (what is happening), objects (which
objects, where), presence (who is connected), and
location (where are located the connected members, RA
and GAPA). Future work which is developed within [4]
includes extending the infrastructure to cover additional
aspects like security, disconnected operation, instant
messaging.

The results from simulation and initial evaluation with
a prototype implementation being developed show how
collaborative applications can be constructed with a
Function Dispersion architecture using a decentralized,
distributed (P2P) middleware which is autonomous and
self-organized, and that can be extended to support the
requirements presented in this paper.

6. Conclusions

www.manaraa.com

The design of systems formed by persons and

machines, which interact intensively, requires taking
account on the complexity of both sides: the aspects of
technology and how human groups behave.

Technology offers opportunities and limitations, which
once identified can be exploited to allow new possibilities
for collaboration between persons, while at the same time
the respecting the autonomy of groups and the integration
of persons in disperse locations.

The proposed architecture fulfils the majority of the
identified requirements for building distributed
collaborative applications, including distributed
components, light clients, and resource provision on
demand.

Towards this architecture we presented as case study
the middleware “LaColla”, which provides services for
collaborative applications with the goal to simplify the
design of real-world distributed collaborative
applications.

References

[1] Ardaiz, O. Application Network Deployment in the Internet,
PhD Thesis, 2003.
[2] Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web,
Scientific American, May 2001.
[3] Burbeck, S. Applications Programming in Smalltalk-80:
How to use the Model-View-Controller (MVC),
1992.
[4] CRAC, Proyecto MCYT, 2002-2005,
http://research.ac.upc.es/crac/
[5] Doval, D. Overlay Networks, IEEE Internet Computing, v7
#4, 2003.
[6] Marquès, J. M. LaCOLLA: una infraestructura autònoma i
auto-organitzada per facilitar la col·laboració, PhD Thesis,
2003.
[7] Menascé, D. Scalable P2P Search, IEEE Internet
Computing, v7 #2, 2003.
[8] Navarro, L. Canal de Aprendizaje, Internal report, 2003.
[9] Richardson, T.; Stafford-Fraser, Q.; Wood, K.R.; Hopper, A.
Virtual Network Computing, IEEE Internet Computing, Volume
2, Number 1, January/February 1998.
[10] Stevens, R.; Papka, M. E.; Disz, T. Prototyping the
workspaces of the future, IEEE Internet Computing, v7 #4, Julio
2003.
[11] Weiser, M. Some Computer Science Problems in
Ubiquitous Computing, Communications of the ACM, July
1993.

	References

